

Department of Electronics and Telecommunication Engineering University of Moratuwa Sri Lanka

PG Diploma MSc. in Electronics and Automation, Semester 3, 2006/2007 MSE304/ME5144 Mechatronics and Robotics

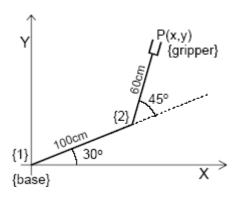
Answer all questions

Time allowed: Two hours

[Q1]. Background

- a. Explain the reasons for increasing demand of factory robotizisation [25]
 b. Name robot manipulator types and five major areas robotics applications [25]
- c. Describe the singularity problem of serial link robot manipulators [25]
- d. Describe the stability issue and "move-and-wait" strategy in space telerobotics [25]

[Q2] Co-ordinate Transformation


{A} and {B} are coincident frames. {B} rotates 30° about \mathbf{z}_{A} , 45° about \mathbf{x}_{A} , and then translates to (3, 2, 1) position w.r.t {A}.

a. Find
$${}_{R}^{A}T$$
. [40]

- b. A vector ^BP = [1, 1.5, -3] is attached to {B}. Find the position coordinates of ^BP with respect to {A}. [20]
- c. Find ${}^B_A T$ [20]
- d. A vector ${}^{A}Q = [1.5, 0, -2]$ is attached to $\{A\}$. Find ${}^{B}Q$. [20]

[Q3] Robot Manipulators

A two-link planner arm is shown below.

- (a) Assign co-ordinate frames to {base}, {1}, {2}, and {gripper} [25]
- (b) Determine homogeneous transformation matrices ${}^{\text{base}}_{1}\mathbf{T}$, ${}^{1}_{2}\mathbf{T}$, and ${}^{2}_{\text{gripper}}\mathbf{T}$ [35]
- (c) Determine $_{gripper}^{base}$ **T** and find from it the gripper position and orientation with respect to the {base} [25]
- (d) Derive Jacobian base $J(\Theta)$ [25]

[Q4] <u>Sensors-based Control</u>
The "reach-and-grasp" task of a robot hand is shown below

(a)	List up the required sensors for the robotic hand. And explain how you would selectively	
	use those sensors to reach and grasp the object	[25]
(b)	Explain how you could detect slippage during grasping	[25]
(c)	Explain how you could control the contact force just enough to stop slippage	[25]
(d)	Explain how you could use a gudrature optosensor for speed sensing at high and low speeds	[25]